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Abstract. Uncertainty quantification of long-term modeled wind speed is essential to ensure stakeholders can best leverage

wind resource numerical data sets. Offshore, this need is even stronger given the limited availability of observations of wind

speed at heights relevant for wind energy purposes and therefore the heavier relative weight of numerical data sets for wind

energy planning and operational projects. In this analysis, we consider the National Renewable Energy Laboratory’s 20-year

updated numerical offshore data set for the U.S. East Coast and provide a methodological framework to leverage both floating5

lidar and near-surface buoy observations in the region to quantify uncertainty in the modeled hub-height wind resource. We

first show how using a numerical ensemble to quantify the uncertainty in modeled wind speed is insufficient to fully capture

the model deviation from real-world observations. Next, we train and validate a machine learning technique to vertically

extrapolate near-surface wind speed to hub height using the available short-term lidar data sets in the region. We then apply

this model to vertically extrapolate the long-term near-surface buoy wind speed observations to hub height so that they can10

be directly compared to the long-term numerical data set. We find that the mean 20-year uncertainty in 140 m wind speed is

slightly lower than 3 m s−1 across the considered region, with larger uncertainty in stable conditions.
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1 Introduction20

The offshore wind energy industry has been growing at an unprecedented pace worldwide (Musial et al., 2022). While only a

single 30 MW offshore wind power plant currently exists in the United States (Deepwater Wind, 2016), many more are planned

to be built in the coming years, with a target of at least 30 GW of installed capacity by 2030 (Room, 2021). With a total offshore

technical resource potential thought to be about twice the current national energy demand (Musial et al., 2016), offshore wind
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energy represents a valuable clean source of energy to meet future needs. Such growth requires the existence of accurate25

long-term wind resource data sets to help interested stakeholders in their preconstruction energy evaluations (Brower, 2012).

Given the technical, logistical, and economical challenges in deploying instruments capable of characterizing the offshore

wind resource at heights relevant for wind energy purposes, numerical weather prediction (NWP) models are often used to

provide continuous (in space and time), high-resolution wind resource assessment. The National Renewable Energy Laboratory

(NREL) recently released a state-of-the-art offshore wind resource assessment product based on 20-year-long simulations using30

the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) for all U.S. offshore waters. This updated data

set is intended to replace the offshore component of the WIND Toolkit (Draxl et al., 2015).

Given the high stakes at play connected to the planned future growth of offshore wind energy, it is essential that data sets

such as NREL’s quantify and communicate the uncertainty that comes with the modeled wind resource. In fact, previous studies

showed how even a small uncertainty change in the modeled mean wind speed translates into an almost double uncertainty for35

the long-term prediction of the annual energy production of a wind plant (Johnson et al., 2008; White, 2008; Holstag, 2013;

Truepower, 2014), which is associated with significantly higher interest rates for new wind project financing.

A somewhat conventional approach to quantify uncertainty from NWP models is to consider the variability of the quantity

of interest – in our case wind speed – across a number of numerical ensemble members, which are different realizations of

the numerical model obtained by tweaking the numerical model setup. Many different setup choices can affect the wind speed40

predicted by an NWP model: which planetary boundary layer (PBL) scheme to adapt in the simulations (Ruiz et al., 2010;

Carvalho et al., 2014a; Hahmann et al., 2015; Olsen et al., 2017), which large-scale atmospheric product to use to force the

model runs (Carvalho et al., 2014b; Siuta et al., 2017), the model horizontal resolution (Hahmann et al., 2015; Olsen et al.,

2017), the model spin-up time (Hahmann et al., 2015), and data assimilation techniques (Ulazia et al., 2016) are some of the

main contributing factors to wind speed variability across different model runs. Running a numerical ensemble can quantify45

what we call the boundary condition and parametric uncertainty, and Bodini et al. (2021) showed how using machine learning

approaches can reduce the temporal extent of the computationally expensive ensemble runs necessary to quantify this type of

uncertainty over a long-term period.

However, quantifying only the uncertainty connected to the possible choices in model setup presents several limitations.

In fact, the magnitude of the boundary condition and parametric uncertainty that can be quantified from the NWP ensemble50

variability is strictly connected to the limited number of choices sampled within the considered model setups. NWP model

ensembles tend to lead to an underdispersive behavior (Buizza et al., 2008; Alessandrini et al., 2013), so that only a limited

component of the actual wind speed error with respect to observations can be quantified from them. The proper, full uncer-

tainty in NWP-model-predicted wind speed can only be quantified when leveraging direct observations of the wind resource,

concurrent with the modeled period. In this ideal scenario, the residuals between modeled and observed wind speed can be55

calculated, and the model error can be quantified both in terms of its bias (i.e., the mean of the residuals) and uncertainty (or,

in simple terms that will be refined later in the paper, the standard deviation of the residuals).

In our analysis, we present a 20-year uncertainty quantification for the mid-Atlantic region of the United States. In Sect.

2 we describe the numerical and observational data sets used, and in Sect. 3 we describe the approach used to complete our
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long-term uncertainty quantification. In Sect. 4 we dive deeper into the already mentioned topic of using numerical ensembles60

to quantify uncertainty and provide a demonstration of the limits of such an approach. We accurately validate our uncertainty

quantification approach in Sect. 5, present the main results of our long-term uncertainty quantification in Sect. 6, and conclude

our analysis in Sect. 7.

2 Data

2.1 Numerical data65

We use NREL’s WRF-modeled long-term wind speed data in the mid-Atlantic region (Bodini et al., 2020). The model is run

from January 2000 to December 2020 using the model setup illustrated in Table 1. Multiple model setups (obtained by tweaking

the reanalysis forcing, PBL scheme, sea surface temperature product, and land surface model) were considered, and the model

setup described here was chosen, as it could best be validated against available lidar observations in the region (Pronk et al.,

2022). The WRF simulations are run separately for each month and then concatenated into a single, 20-year time series at each70

location. We use a 2-day spin-up period at the beginning of each simulated month (e.g., July simulations started on 29 June)

to allow the model to develop sufficiently from the initial conditions and stabilize. We apply atmospheric nudging to the outer

domain every 6 hours, and find that the accuracy of simulated winds is not impacted by the length of the 1-month simulation

periods (i.e., the model errors at the beginning of each month are not lower than at the end of the month, on average).

2.2 Observations75

An ideal uncertainty quantification over the 20-year extent of our offshore wind resource numerical data set would require

concurrent 20-year time series of observed winds at a height relevant for wind energy purposes and at as many locations as

possible within the modeled domain. In reality, such extensive observations do not exist. We therefore consider two sets of

observations and apply a machine-learning-based approach to leverage the advantages of each. On one hand, we use lidar

observations in the region, which provide measurements at hub height but only over a handful of months. On the other hand,80

we consider observations from National Data Buoy Center (NDBC) buoys, which are available over much longer time periods

but only provide observations close to the sea surface.

2.2.1 Lidar observations

We consider four sets of lidar measurements taken from three lidars in the region (Fig. 1):

– The New York State Energy Research and Development Authority (NYSERDA) E05 North data set (OceanTech Ser-85

vices/DNV GL, 2020), collected by a ZephIR ZX300M unit, from 12 August 2019 to 19 September 2021. Most observa-

tions from the lidar and other instruments on the lidar buoy are provided as 5-minute averages, after proprietary quality

checks are applied to the data. We use wind speed and wind direction, which are available at 3.1 m and then every 20 m
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Table 1. Key attributes of the 20-year WRF simulations used in this study.

Feature Specification

WRF version 4.2.1

Grid spacing 6 km, 2 km (nested)

Output time resolution 5 minutes

Vertical levels 61

Near-surface-level heights (m) 12, 34, 52, 69, 86, 107, 134, 165, 200

Atmospheric forcing ERA-5 reanalysis (Hersbach et al., 2020)

Planetary boundary layer scheme Mellor–Yamada–Nakanishi–Niino Level 2.5 (Nakanishi and Niino, 2009)

Land surface model Noah

Microphysics Ferrier

Longwave radiation Rapid radiative transfer model

Shortwave radiation Rapid radiative transfer model

Topographic database Global multiresolution terrain elevation data from the

U.S. Geological Survey and National Geospatial-Intelligence Agency

Land-use data Moderate Resolution Imaging Spectroradiometer 30 s

Cumulus parameterization Kain–Fritsch (6 km domain) (Kain and Fritsch, 1993)

Sea surface temperature product Operational Sea Surface Temperature

and Sea Ice Analysis (OSTIA) (Donlon et al., 2012)

from 20 m to 200 m above sea level, and air temperature. Sea surface temperature is provided as hourly average values.

To be consistent, we calculate hourly averages for all the variables considered in the analysis.90

– The NYSERDA E06 South data set, collected by a second ZephIR ZX300M unit, from 4 September 2019 to 27 March

2022. The same data considerations listed above for the E05 instrument apply to this unit as well. For this unit, data

availability statistics, as defined by the proprietary quality controls applied to the instrument, were released and show

that the lidar data availability decreases with height from 83 % to 76 %, while near-surface measurements have an

availability greater than 96 %.95

– The Atlantic Shores consortium 06 data set, collected by a third ZephIR ZX300M unit, from 26 February 2020 to 14

May 2021. Data (wind speed and wind direction profiles, air temperature, and sea surface temperature) are available at

a 10-minute resolution. Wind speed and direction data are provided at 4.1 m, all 20 m intervals from 40 to 200 m, and

250 m above sea level.

– The Atlantic Shores consortium 04 data set, collected by the same unit, which was moved to a different location and100

recorded data from 14 May 2021 to 6 March 2022, with the same data specifications as the other Atlantic Shores data

set.
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Figure 1. Map of the observational data sets used in the analysis. Wind lease areas are shown in white; wind planning areas in gray.

Some of the considered floating lidar platforms were not operational for part of their overall deployment period. Figure 2

shows the monthly coverage for each buoy. We kept only hourly time stamps where 140 m wind speed, near-surface wind

speed, near-surface wind direction, air temperature, and sea surface temperature were all available.105

2.2.2 NDBC buoy observations

Finally, we consider long-term near-surface observations from eight buoys managed by the NDBC (locations in Fig. 1). At

each buoy, we consider observations of air and sea surface temperatures, and wind speed and direction. Table 2 shows the

heights at which each variable is recorded. One buoy (ID 44009) provides observations at slightly different heights than all the

other buoys, but we determined that this minor difference would have a minimal impact on our results. Whenever available, we110

take data from the full 20-year period that is modeled in our WRF runs. If the full 20-year period is not available, we consider

observations from the start of each buoy’s period of record to the end of 2020. Data are provided at 10-minute resolution for the

most recent years, and 1-hour resolution for the first few years at the beginning of the century. To be consistent, we calculate

1-hour averages across the whole 20-year period.
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Figure 2. Data availability chart for the four lidar data sets. Only hourly time stamps were kept for which all the variables considered in this

analysis were valid.

3 Methods115

To be able to leverage the long-term time series of the NDBC buoys for an uncertainty quantification that is relevant to offshore

wind energy purposes, the buoy observations need to be vertically extrapolated to a height of interest for commercial wind

energy development. Several techniques exist to vertically extrapolate wind speeds. Traditional approaches include using a

power law relationship (Peterson and Hennessey Jr, 1978) or a logarithmic profile more firmly based on the Monin–Obukhov
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Table 2. List of NDBC buoys used in this analysis.

Name
Wind speed Air temperature Sea surface temperature Period of record

height (meters above water line) height (meters above water line) height (meters below water line) used

44008 4.1 3.7 1.5 2000–2020

44009 3.8 3.4 2.0 2000–2020

44017 4.1 3.7 1.5 2002–2020

44018 4.1 3.7 1.5 2002–2020

44020 4.1 3.7 1.5 2009–2020

44025 4.1 3.7 1.5 2000–2020

44065 4.1 3.7 1.5 2008–2020

44066 4.1 3.7 1.5 2009–2020

Similarity Theory (Monin and Obukhov (1954)). However, recent research has shown how machine-learning-based techniques120

outperform these conventional extrapolation approaches, both onshore (Vassallo et al., 2020; Bodini and Optis, 2020b, a) and

offshore (Optis et al., 2021).

3.1 Machine learning algorithm for wind speed vertical extrapolation

We use a random forest machine learning model, a robust ensemble regression algorithm that has been successfully applied to

similar applications. In this work, we use the RandomForestRegressor module in Python’s Scikit-learn (Pedregosa et al.,125

2011). Additional details on random forests can be found in machine learning textbooks (e.g., Hastie et al. (2005)). We train

the regression model to predict hourly average wind speed at 140 m. We use the following variables as inputs to the model, all

as hourly averages:

– Near-surface wind speed

– Near-surface wind direction1130

– Air temperature

– Sea surface temperature (SST)

– Difference between air temperature and SST

– Time of day1

– Month1.135
1 To preserve the cyclical nature of this variable, we calculate and include as inputs its sine and cosine, which are both needed because each value of sine

only (or cosine only) is linked to two different values of the cyclical variable.

7

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



We use a 5-fold cross validation, where we build the testing set using a consecutive 20 % of the observations from each

calendar month in the period of record to ensure that the learning algorithm can be (trained and) tested on a set of data that

captures the seasonal variability at each site well. Also, we consider the same hyperparameter ranges shown in Bodini and

Optis (2020b) and sample 20 randomly selected combinations of them during the cross-validation process. The combination of

hyperparameters that leads to the lowest root-mean-square error (RMSE) between the observed and random-forest-predicted140

140 m wind speed is selected and used in the final model.

3.2 Uncertainty quantification

As detailed in Sects. 5 and 6, we apply the random forest algorithm to vertically extrapolate wind speed up to 140 m at

the location of the eight NDBC buoys. Then, to assess the uncertainty in WRF-modeled long-term wind speed at each buoy

location, we first calculate the time series of the residuals between 140 m modeled winds and 140 m extrapolated winds. Then,145

we calculate the average and the standard deviation of each residual time series, which represent the bias and uncertainty

components of the model error at each location, respectively (Fig. 3). Next, we compare the biases across all the measurement

locations (in our case, the eight buoys):

– If the standard deviation of the biases is smaller than the typical single-site uncertainty, then the latter is a good measure

of the model uncertainty.150

– If the standard deviation of the biases exceeds the typical single-site uncertainty, then the model uncertainty is dominated

by the unpredictable bias and can be estimated from the standard deviation of the biases itself.

Finally, when estimating model uncertainty from measurements, it is important to remember that the measurements themselves

have an uncertainty. In our case, we need to consider both the actual measurement uncertainty (σobs) and the uncertainty

connected to the vertical extrapolation approach (σML). Both these uncertainty components are passed on to the model and155

should be added in quadrature to the model uncertainty σWRF estimated using the steps above, to obtain a total uncertainty

quantification (JCGM 100:2008, 2008):

σtot =
√
σ2

WRF +σ2
obs +σ2

ML (1)

4 Limits of using an ensemble-based approach for uncertainty quantification

Before diving deep into the uncertainty quantification using the approach outlined in the previous section, we are interested in160

confirming the limitations of using the boundary condition and parametric uncertainty as a way to fully capture an NWP model

uncertainty, as discussed in the Introduction. To do so, we run a 1-year (September 2019 to August 2020) WRF ensemble across

the mid-Atlantic region, and calculate the (temporal) mean of the modeled 140 m wind speed standard deviation calculated

across the ensemble at each time stamp at the location of the two NYSERDA lidars. These values quantify the model boundary

condition and parametric uncertainty (sampled within the considered numerical ensemble, at the two lidar locations). We then165
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Figure 3. Sketch showing how model bias and model uncertainty are defined in our analysis.

compare these values with the total model uncertainty, calculated using Eq. (1). We compute σWRF as the standard deviation of

the 1-year time series of the residuals between 140 m wind speed from the main WRF run (i.e., the one with the setup used for

the full 20-year period) and concurrent observations from the two NYSERDA lidars. We assume the uncertainty in the lidar

observations σobs to be 3 % of the reported lidar 140 m wind speed across the considered period following what was reported

in the NYSERDA lidar documentation (OceanTech Services/DNV GL, 2020), and therefore equal to 0.31 m s−1. Finally, in170

this case, σML = 0 because we are not applying any vertical extrapolation approach. We perform both calculations from hourly

average time series of modeled and observed wind speed.

For this exercise, we consider 16 ensemble members, obtained by considering all the possible combinations of setups result-

ing from the following four variations:

– Reanalysis forcing: We consider the state-of-the-art ERA5 reanalysis product developed by the European Centre for175

Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020) and the Modern-Era Retrospective analysis for

Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017), developed by the National Aeronautics and

Space Administration (NASA). Both these reanalysis products have been widely used in applications related to wind

energy and represent the most advanced reanalysis products available to date.

– Planetary boundary layer scheme: We consider the Mellor–Yamada–Nakanishi–Niino (MYNN) (Nakanishi and Niino,180

2009) and the Yonsei University (YSU) (Hong et al., 2006) PBL schemes. These two models are widely considered

the two most popular PBL schemes in WRF, especially when considering wind-related applications: YSU was used in

the WIND Toolkit (Draxl et al., 2015), and MYNN was used in the New European Wind Atlas (Hahmann et al., 2020;

Dörenkämper et al., 2020).

– Sea surface temperature product: We consider the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA)185

data set produced by the UK Met Office (Donlon et al., 2012) and the National Center for Environmental Prediction

(NCEP) Real-Time Global (RTG) SST product (Grumbine, 2020).
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– Land surface model (LSM): We consider the Noah LSM and the updated Noah-Multiparameterization (Noah-MP) LSM

(Niu et al., 2011).

Table 3 summarizes the result of this comparison. We find that, while the boundary condition and parametric uncertainty at190

either lidar are lower than 1 m s−1, the actual model uncertainty is instead closer to 2 m s−1. This comparison clearly confirms

how an NWP model’s boundary condition and parametric uncertainty, which can be quantified from the variability across a

numerical ensemble, can only quantify a limited component of the full model uncertainty – in our specific case for hub-height

wind speed – with a relative difference of about 50 %.

Table 3. Comparison between boundary condition and parametric uncertainty and total model uncertainty in 140 m wind speed at the

locations of the two NYSERDA lidars.

Lidar
Boundary condition and parametric WRF Total model

uncertainty (ms−1) uncertainty (ms−1) uncertainty (ms−1)

NYSERDA E05 0.95 1.90 1.93

NYSERDA E06 0.96 1.84 1.87

5 Machine learning wind speed vertical extrapolation validation195

Given the inappropriate uncertainty quantification resulting from a numerical ensemble, we are now ready to start working

on our machine learning vertical extrapolation approach to be able to apply our proposed pipeline for a broader uncertainty

quantification. For the long-term uncertainty quantification, the random forest algorithm needs to be applied at each buoy

location to derive a long-term time series of extrapolated winds, which will be compared to the WRF-modeled wind resource.

However, before doing so, the regression model first needs to be trained at the floating lidar sites so that it can learn how to200

model hub-height wind speed in the region from a set of near-surface data. Also, the generalization skill of the model needs

to be quantified, as a proper uncertainty quantification needs to also account for the uncertainty of the approach used to obtain

the observation-based long-term time series of hub-height winds at each buoy location.

We validate the machine learning extrapolation model using a "round-robin" approach. In fact, it is neither fair nor practically

useful to assess the skill of the regression algorithm when it is trained and tested at the same lidar location, as that is not our205

actual application of the model. Instead, one should assess the performance of the extrapolation approach when the random

forest is trained at one lidar and then used to extrapolate wind speed at a different lidar, where the model has no prior knowledge

(or, better yet, limited prior knowledge since the training site is still in the vicinity) of the wind conditions at the site. Figure 4

shows the result of such a round-robin validation; we compare the RMSE of the random forest using all possible combinations

of training and testing lidar data sets.210

Overall, we find that the random forest provides accurate results, with RMSE always lower than 1.5 m s−1. Also, we see

that the model generalizes well when comparing the RMSE obtained under a round-robin scenario to the RMSE values found
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Testing site 

Figure 4. Testing root-mean-square error in predicting hourly average wind speed at 140 m above sea level for the different lidar data sets,

as a function of the data set used to train the random forest.

when using the same site for training and testing; on average, we find a 12.5 % increase in RMSE compared to the same-site

scenario. Notably, for the two NYSERDA lidars, which have the longest period of record, we find little to no degradation in

performance when the random forest is trained at one lidar and then tested at the other one, which is more than 80 km away.215

To better visualize the good performance of the extrapolation model, Fig. 5 shows an example of a scatter plot of observed and

machine-learning-predicted hub-height winds when the random forest is trained at Atlantic Shores 04 and applied at Atlantic

Shores 06.

Finally, the application of the random forest model also allows for a quantification of the relative importance of the various

input variables used to feed the model. Figure 6 shows a chart of the feature importance at the Atlantic Shores 06 lidar site. With220

no surprise, we find that wind speed close to the surface is the most influential variable, followed by the difference between air

temperature and sea surface temperature, which is a proxy for atmospheric stability. Similar results are observed at the other

lidar sites (not shown).

6 Modeled long-term wind resource uncertainty quantification

After properly validating and assessing the generalization skills of the machine-learning-based vertical extrapolation model225

by leveraging the short-term lidar data, we can now apply it to extrapolate the long-term observations collected by the NDBC

buoys. To do so, we train a random forest using all the lidar data sets combined to optimize the amount of training data for the

11

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 5. Scatter plot of observed and machine-learning-predicted 140 m wind speed at the Atlantic Shores 06 lidar when the learning

algorithm is trained at the Atlantic Shores 04 lidar.

Figure 6. Predictor importance for the random forest used to extrapolate winds at 140 m above sea level at lidar Atlantic Shores 06. "WS"

stands for wind speed, "WD" stands for wind direction.

model, and then apply the trained model at each buoy location. We then compare the long-term extrapolated winds against the

WRF-modeled data at 140 m above sea level (Fig. 7) at each NDBC buoy location.

We finally compute the modeled wind speed uncertainty, following the steps detailed in Sect. 3.2. Table 4 shows bias and230

uncertainty values calculated as mean and standard deviation of the (up to) 20-year time series of residuals between modeled

and extrapolated 140 m wind speed at each NDBC buoy location. We find very small biases (always smaller than 0.3 m s−1

in either direction) across all buoy locations. Therefore, the uncertainty in the modeled wind speed can be quantified from the

single-site WRF uncertainty values σWRF shown in the table. To these numbers, we add in quadrature a quantification of the

12

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



0 5 10 15 20 25
WRF-modeled 140-m wind speed (m s 1)

0

5

10

15

20

25

Ex
tra

po
la

te
d 

14
0-

m
 w

in
d 

sp
ee

d 
(m

 s
1 )

Figure 7. Scatter plot of 20-year WRF-modeled and machine-learning-predicted 140 m wind speed at the location of the 44025 NDBC buoy.

uncertainty in the observations (σobs) and of the machine learning model used to vertically extrapolate the buoy data (σML).235

Once again, following the lidar uncertainty assessment in OceanTech Services/DNV GL (2020), we consider σobs = 0.29 m s−1

(which is slightly different from what was used in Sect. 4 because this time we are calculating the mean wind speed over the full

period of record of all lidar data sets). We quantify the extrapolation model uncertainty in terms of the mean RMSE obtained

under all the site combinations considered in the round-robin validation (i.e., the mean of all the off-diagonal values in the

matrix in Fig. 4) so that σML = 1.35 m s−1.240

Table 4. Twenty-year model bias and model uncertainty in 140 m wind speed at the location of the NDBC buoys considered in this study.

NDBC buoy Bias (ms−1) WRF uncertainty (ms−1) Total uncertainty (ms−1)

44008 0.24 2.59 2.94

44009 -0.04 2.53 2.88

44017 0.05 2.43 2.79

44018 0.03 3.52 3.78

44020 0.29 2.56 2.91

44025 -0.22 2.46 2.82

44065 0.03 2.57 2.92

44066 -0.03 2.39 2.76

We find that at all but one buoy, the total uncertainty in modeled 140 m wind speed is slightly lower than 3 m s−1. The

uncertainty increases as the distance from the lidars, used to train the machine learning model, increases. Specifically, buoy

44018 has the largest uncertainty, which is consistent with this buoy being separated from all the lidars by Cape Cod; it is

reasonable to expect that the atmospheric conditions at this buoy site are considerably different from what was used to train the
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Figure 8. Box plot showing how the modeled 140 m wind speed uncertainty varies as a function of wind direction, time of day, season,

and atmospheric stability conditions. For each buoy location, results are expressed as percent difference from the mean uncertainty values

(rightmost column in Table 4).

machine learning model. Also, we note how the total uncertainty values obtained here are about 1 m s−1 higher than what was245

found from the short-term direct comparison between lidar observations and WRF modeled data in Sect. 4. While the impact of

different lengths of analysis cannot be ruled out, this comparison shows how having access to the long-term lidar observations

would be extremely beneficial in allowing a more direct quantification (leading to lower values) of the model uncertainty for

long-term wind resource assessment purposes.

Finally, we focus on the variability of the quantified uncertainty and segregate results by time of day (9 a.m.–4 p.m. local250

time vs. 9 p.m.–4 a.m. local time), season (June, July, August vs. December, January, February), wind direction (180◦–270◦ vs.

270◦–360◦, which are the two dominant wind direction regimes in the region (Pronk et al., 2022)), and atmospheric stability

conditions (quantified in terms of the modeled inverse Obukhov length L−1 at 2 m above sea level, where we simply consider

stable conditions for L−1 > 0 m−1 and unstable conditions for L−1 < 0 m−1). We summarize our results in the box plots in

Fig. 8. The largest difference in modeled wind speed uncertainty is for stable conditions, which are generally more challenging255

to numerically model compared to unstable conditions. Pronk et al. (2022) showed that stable conditions in this region are

dominant in the summer, and Bodini et al. (2019) showed that southwesterly winds are dominant in the summer months. In

fact, we find a larger wind speed uncertainty for southwesterly winds and in the summer (although winter shows a significant

scatter among the buoys). Finally, nighttime uncertainty is larger than daytime, although the difference between the two is

limited.260
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7 Conclusions

The National Renewable Energy Laboratory has released a state-of-the-art 20-year wind resource assessment product for all the

offshore regions in the United States. Because of its numerical nature, this data set has inherent uncertainty, the quantification

of which is of primary importance for stakeholders aiming to use this data set to contribute to offshore wind energy growth.

In our analysis, we have shown the limits of quantifying model uncertainty in terms of the variability of a model ensemble,265

which in our case captured only roughly half of the total model uncertainty. Instead, we recommend leveraging observations

to fully capture NWP model uncertainty. In the absence of long-term observed wind speeds at hub height, we have proposed a

methodological pipeline to vertically extrapolate near-surface winds from long-term buoy observations using machine learning.

Our approach was well validated across the mid-Atlantic region. The total model uncertainty we observed in hub-height wind

speed was, on average, just below 3 m s−1. This number is not negligible, especially considering that wind energy is roughly270

related to the cube of wind speed, but several opportunities exist to reduce this uncertainty in the future.

This analysis is one of many examples of the synergy between NWP models and observations, which points to the multiple

interconnections between the two. A larger number of long-term observations are needed to both quantify and, in the long

term, reduce the inherent uncertainty of numerical models. In this context, the sharing of proprietary observational data sets

should be considered, and the long-term advantages resulting from better numerical modeling should be kept in mind when275

assessing the overall balance between costs and benefits of such data-sharing initiatives. In the future, a similar analysis can be

performed for other offshore regions where both the 20-year numerical data set and enough observations to assess uncertainty

are available.

Data availability. NREL’s long-term wind resource data sets can be found at https://doi.org/10.25984/1821404. NDBC buoy observa-

tions can be downloaded from https://www.ndbc.noaa.gov. Observations from the NYSERDA floating lidars can be accessed at https:280

//oswbuoysny.resourcepanorama.dnv.com. Atlantic Shores lidar observations can be downloaded from https://erddap.maracoos.org/erddap/

tabledap.

Author contributions. Nicola Bodini: conceptualization, methodology, formal analysis, writing (original draft), visualization, supervision,

project administration. Simon Castagneri: formal analysis, writing (review), and editing.

Competing interests. The authors declare they have no competing interests.285

Acknowledgements. The authors would like to thank the members of the NOWRDC project advisory board, and in particular Nicolai Ny-

gaard, for the constructive feedback that helped shape the analysis. A portion of this research was performed using computational resources

15

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



sponsored by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable

Energy Laboratory.

16

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



References290

Alessandrini, S., Sperati, S., and Pinson, P.: A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-

term wind power forecasting on real data, Applied Energy, 107, 271–280, https://doi.org/https://doi.org/10.1016/j.apenergy.2013.02.041,

2013.

Bodini, N. and Optis, M.: How accurate is a machine learning-based wind speed extrapolation under a round-robin approach?, in: Journal of

Physics: Conference Series, vol. 1618, p. 062037, IOP Publishing, 2020a.295

Bodini, N. and Optis, M.: The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind

speeds, Wind Energy Science, 5, 489–501, https://doi.org/https://doi.org/10.5194/wes-5-489-2020, 2020b.

Bodini, N., Lundquist, J. K., and Kirincich, A.: US East Coast lidar measurements show offshore wind turbines will encounter very low

atmospheric turbulence, Geophysical Research Letters, 46, 5582–5591, 2019.

Bodini, N., Optis, M., Rossol, M., Rybchuk, A., and Redfern, S.: US Offshore Wind Resource data for 2000-2020,300

https://doi.org/10.25984/1821404, 2020.

Bodini, N., Hu, W., Optis, M., Cervone, G., and Alessandrini, S.: Assessing boundary condition and parametric uncertainty in numerical-

weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble, Wind Energy Science, 6,

1363–1377, 2021.

Brower, M.: Wind Resource Assessment: A Practical Guide to Developing a Wind Project, John Wiley & Sons, Hoboken, New Jersey,305

https://doi.org/10.1002/9781118249864, 2012.

Buizza, R., Leutbecher, M., and Isaksen, L.: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System, Quarterly

Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 134,

2051–2066, https://doi.org/https://doi.org/10.1002/qj.346, 2008.

Carvalho, D., Rocha, A., Gómez-Gesteira, M., and Santos, C. S.: Sensitivity of the WRF model wind simulation and wind energy production310

estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula, Applied Energy, 135, 234

– 246, https://doi.org/10.1016/j.apenergy.2014.08.082, 2014a.

Carvalho, D., Rocha, A., Gómez-Gesteira, M., and Silva Santos, C.: WRF wind simulation and wind energy production es-

timates forced by different reanalyses: Comparison with observed data for Portugal, Applied Energy, 117, 116 – 126,

https://doi.org/10.1016/j.apenergy.2013.12.001, 2014b.315

Deepwater Wind: Block Island Wind Farm, URL http://dwwind. com/project/block-island-wind-farm, 2016.

Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The operational sea surface temperature and sea ice

analysis (OSTIA) system, Remote Sensing of Environment, 116, 140–158, https://doi.org/https://doi.org/10.1016/j.rse.2010.10.017, 2012.

Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco,

J. F., Navarro, J., et al.: The making of the new european wind atlas–part 2: Production and evaluation, Geoscientific model development,320

13, 5079–5102, 2020.

Draxl, C., Clifton, A., Hodge, B.-M., and McCaa, J.: The wind integration national dataset (wind) toolkit, Applied Energy, 151, 355–366,

2015.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R.,

et al.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), Journal of Climate, 30, 5419–5454,325

https://doi.org/https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.

17

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



Grumbine, R.: Description of NCEP High Res. SST Analysis, https://polar.ncep.noaa.gov/sst/rtg_high_res/description.shtml., 2020.

Hahmann, A. N., Vincent, C. L., Peña, A., Lange, J., and Hasager, C. B.: Wind climate estimation using WRF model output: method and

model sensitivities over the sea, International Journal of Climatology, 35, 3422–3439, https://doi.org/10.1002/joc.4217, 2015.

Hahmann, A. N., Sı̄le, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro,330

J., Olsen, B. T., et al.: The making of the New European Wind Atlas–part 1: model sensitivity, Geoscientific model development, 13,

5053–5078, 2020.

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J.: The elements of statistical learning: data mining, inference and prediction, The

Mathematical Intelligencer, 27, 83–85, 2005.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-335

ers, D., et al.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/https://doi.org/10.1002/qj.3803, 2020.

Holstag, E.: Improved Bankability, The Ecofys position on Lidar Use, Ecofys report, 2013.

Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Monthly Weather

Review, 134, 2318–2341, https://doi.org/https://doi.org/10.1175/MWR3199.1, 2006.340

JCGM 100:2008: Evaluation of measurement data — Guide to the expression of uncertainty in measurement, Joint Committee for Guides in

Metrology, 2008.

Johnson, C., White, E., and Jones, S.: Summary of Actual vs. Predicted Wind Farm Performance: Recap of WINDPOWER 2008, in:

AWEA Wind Resource and Project Energy Assessment Workshop, http://www.enecafe.com/interdomain/idlidar/paper/2008/AWEA%

20workshop%202008%20Johnson_Clint.pdf, 2008.345

Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in: The representation of cumulus

convection in numerical models, pp. 165–170, Springer, 1993.

Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci.

USSR, 151, 1954.

Musial, W., Heimiller, D., Beiter, P., Scott, G., and Draxl, C.: Offshore wind energy resource assessment for the United States, Tech. rep.,350

National Renewable Energy Laboratory (NREL), Golden, CO (United States), https://www.nrel.gov/docs/fy16osti/66599.pdf, 2016.

Musial, W., Spitsen, P., Duffy, P., Beiter, P., Marquis, M., Hammond, R., and Shields, M.: Offshore Wind Market Report: 2022 Edition, Tech.

rep., National Renewable Energy Lab.(NREL), Golden, CO (United States), 2022.

Nakanishi, M. and Niino, H.: Development of an improved turbulence closure model for the atmospheric boundary layer, Journal of the

Meteorological Society of Japan. Ser. II, 87, 895–912, 2009.355

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., et al.: The

community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-

scale measurements, Journal of Geophysical Research: Atmospheres, 116, https://doi.org/https://doi.org/10.1029/2010JD015139, 2011.

OceanTech Services/DNV GL: NYSERDA Floating Lidar Buoy Data, https://oswbuoysny.resourcepanorama.dnvgl.com, 2020.

Olsen, B. T., Hahmann, A. N., Sempreviva, A. M., Badger, J., and Jørgensen, H. E.: An intercomparison of mesoscale models at simple sites360

for wind energy applications, Wind Energy Science, 2, 211–228, https://doi.org/10.5194/wes-2-211-2017, 2017.

Optis, M., Bodini, N., Debnath, M., and Doubrawa, P.: New methods to improve the vertical extrapolation of near-surface offshore wind

speeds, 6, 935–948, https://doi.org/https://doi.org/10.5194/wes-6-935-2021, 2021.

18

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.



Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.:

Scikit-learn: Machine Learning in Python Journal of Machine Learning Research, 2011.365

Peterson, E. W. and Hennessey Jr, J. P.: On the use of power laws for estimates of wind power potential, Journal of Applied Meteorology, 17,

390–394, 1978.

Pronk, V., Bodini, N., Optis, M., Lundquist, J. K., Moriarty, P., Draxl, C., Purkayastha, A., and Young, E.: Can reanalysis products outperform

mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?, Wind Energy Science, 7, 487–504, 2022.

Room, W. H. B.: Fact sheet: Biden administration jumpstarts offshore wind energy projects to create jobs, 2021.370

Ruiz, J. J., Saulo, C., and Nogués-Paegle, J.: WRF Model Sensitivity to Choice of Parameterization over South America: Validation against

Surface Variables, Monthly Weather Review, 138, 3342–3355, https://doi.org/10.1175/2010MWR3358.1, 2010.

Siuta, D., West, G., and Stull, R.: WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in

Complex Terrain, Weather and Forecasting, 32, 493–509, https://doi.org/10.1175/WAF-D-16-0120.1, 2017.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A De-375

scription of the Advanced Research WRF Version 3, Tech. Rep. NCAR/TN-475+STR, Mesoscale and Microscale Meteorology Division,

National Center for Atmospheric Research, Boulder, Colorado, USA, https://doi.org/10.5065/D68S4MVH, 2008.

Truepower, A.: AWS Truepower Loss and Uncertainty Methods, Albany, NY, https://www.awstruepower.com/assets/

AWS-Truepower-Loss-and-Uncertainty-Memorandum-5-Jun-2014.pdf, 2014.

Ulazia, A., Saenz, J., and Ibarra-Berastegui, G.: Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for380

estimating offshore wind energy potential. A case study of the Iberian northern coastline, Applied Energy, 180, 617 – 627,

https://doi.org/10.1016/j.apenergy.2016.08.033, 2016.

Vassallo, D., Krishnamurthy, R., and Fernando, H. J.: Decreasing wind speed extrapolation error via domain-specific feature extraction and

selection, Wind Energy Science, 5, 959–975, 2020.

White, E.: Continuing Work on Improving Plant Performance Estimates, in: AWEA Wind Resource and Project Energy Assessment Work-385

shop, 2008.

19

https://doi.org/10.5194/wes-2023-13
Preprint. Discussion started: 17 February 2023
c© Author(s) 2023. CC BY 4.0 License.


